Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Clin Transl Med ; 14(5): e1655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711203

RESUMO

BACKGROUND: Uterine leiomyosarcomas (uLMS) are aggressive tumours with poor prognosis and limited treatment options. Although immune checkpoint blockade (ICB) has proven effective in some 'challenging-to-treat' cancers, clinical trials showed that uLMS do not respond to ICB. Emerging evidence suggests that aberrant PI3K/mTOR signalling can drive resistance to ICB. We therefore explored the relevance of the PI3K/mTOR pathway for ICB treatment in uLMS and explored pharmacological inhibition of this pathway to sensitise these tumours to ICB. METHODS: We performed an integrated multiomics analysis based on TCGA data to explore the correlation between PI3K/mTOR dysregulation and immune infiltration in 101 LMS. We assessed response to PI3K/mTOR inhibitors in immunodeficient and humanized uLMS patient-derived xenografts (PDXs) by evaluating tumour microenvironment modulation using multiplex immunofluorescence. We explored response to single-agent and a combination of PI3K/mTOR inhibitors with PD-1 blockade in humanized uLMS PDXs. We mapped intratumoural dynamics using single-cell RNA/TCR sequencing of serially collected biopsies. RESULTS: PI3K/mTOR over-activation (pS6high) associated with lymphocyte depletion and wound healing immune landscapes in (u)LMS, suggesting it contributes to immune evasion. In contrast, PI3K/mTOR inhibition induced profound tumour microenvironment remodelling in an ICB-resistant humanized uLMS PDX model, fostering adaptive anti-tumour immune responses. Indeed, PI3K/mTOR inhibition induced macrophage repolarisation towards an anti-tumourigenic phenotype and increased antigen presentation on dendritic and tumour cells, but also promoted infiltration of PD-1+ T cells displaying an exhausted phenotype. When combined with anti-PD-1, PI3K/mTOR inhibition led to partial or complete tumour responses, whereas no response to single-agent anti-PD-1 was observed. Combination therapy reinvigorated exhausted T cells and induced clonal hyper-expansion of a cytotoxic CD8+ T-cell population supported by a CD4+ Th1 niche. CONCLUSIONS: Our findings indicate that aberrant PI3K/mTOR pathway activation contributes to immune escape in uLMS and provides a rationale for combining PI3K/mTOR inhibition with ICB for the treatment of this patient population.


Assuntos
Leiomiossarcoma , Microambiente Tumoral , Neoplasias Uterinas , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Leiomiossarcoma/tratamento farmacológico , Humanos , Feminino , Neoplasias Uterinas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Animais , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico
2.
Respir Res ; 25(1): 175, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654248

RESUMO

BACKGROUND: Two isoforms of Phosphoinositide 3-kinase (PI3K), p110γ and p110δ, are predominantly expressed in leukocytes and represent attractive therapeutic targets for the treatment of allergic asthma. The study aim was to assess the impact of administration of an inhaled PI3Kγδ inhibitor (AZD8154) in a rat model of asthma. METHODS: Firstly, we checked that the tool compound, AZD8154, inhibited rat PI3K γ & δ kinases using rat cell-based assays. Subsequently, a time-course study was conducted in a rat model of asthma to assess PI3K activity in the lung and how it is temporally associated with other key transcription pathways and asthma like features of the model. Finally, the impact on lung dosed AZD8154 on target engagement, pathway specificity, airway inflammation and lung function changes was assessed. RESULTS: Data showed that AZD8154 could inhibit rat PI3K γ & δ isoforms and, in a rat model of allergic asthma the PI3K pathway was activated in the lung. Intratracheal administration of AZD8154 caused a dose related suppression PI3K pathway activation (reduction in pAkt) and unlike after budesonide treatment, STAT and NF-κB pathways were not affected by AZD8154. The suppression of the PI3K pathway led to a marked inhibition of airway inflammation and reduction in changes in lung function. CONCLUSION: These data show that a dual PI3Kγδ inhibitor suppress key features of disease in a rat model of asthma to a similar degree as budesonide and indicate that dual PI3Kγδ inhibition may be an effective treatment for people suffering from allergic asthma.


Assuntos
Asma , Modelos Animais de Doenças , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Ratos , Masculino , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Ratos Sprague-Dawley , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/enzimologia , Relação Dose-Resposta a Droga , Inibidores de Proteínas Quinases/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Antiasmáticos/farmacologia , Ovalbumina/toxicidade
3.
Br J Haematol ; 204(5): 1582-1584, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581289

RESUMO

The role of Pi3K inhibitors in lymphoma is diminishing due to the adverse results from trials in indolent lymphoma, but is a one-size-fits-all approach to drug development penalising some lymphoma subtypes and the newer generation of Pi3K inhibitors? The report by Soumerai et al. of zandelisib with zanubrutinib in follicular and mantle cell lymphoma is an important addition to the data. Commentary on: Soumerai et al. Safety and efficacy of zandelisib plus zanubrutinib in previously treated follicular and mantle cell lymphomas. Br J Haematol 2024;204:1762-1770.


Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Humanos , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma/tratamento farmacológico , Linfoma Folicular/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Piperidinas
4.
Signal Transduct Target Ther ; 9(1): 99, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627366

RESUMO

This registration study assessed clinical outcomes of TQ-B3525, the dual phosphatidylinositol-3-kinase (PI3K) α/δ inhibitor, in relapsed and/or refractory follicular lymphoma (R/R FL). This phase II study (ClinicalTrials.gov NCT04324879. Registered March 27, 2020) comprised run-in stage and stage 2. R/R FL patients after ≥2 lines therapies received oral 20 mg TQ-B3525 once daily in a 28-day cycle until intolerable toxicity or disease progression. Primary endpoint was independent review committee (IRC)-assessed objective response rate (ORR). Based on results (ORR, 88.0%; duration of response [DOR], 11.8 months; progression-free survival [PFS], 12.0 months) in 25 patients at run-in stage, second stage study was initiated and included 82 patients for efficacy/safety analysis. Patients received prior-line (median, 3) therapies, with 56.1% refractory to previous last therapies; 73.2% experienced POD24 at baseline. At stage 2, ORR was 86.6% (71/82; 95% CI, 77.3-93.1%), with 28 (34.2%) complete responses. Disease control rate was 95.1% due to 7 (8.5%) stable diseases. Median time to response was 1.8 months. Among 71 responders, median DOR was not reached; 18-month DOR rate was 51.6%. with median follow-up of 13.3 months, median PFS was 18.5 (95% CI, 10.2-not estimable) months. Median overall survival (OS) was not reached by cutoff date; 24-month OS rate was estimated as 86.1%. Response rates and survival data were consistent across all subgroups. Grade 3 or higher treatment-related adverse events were observed in 63 (76.8%) cases, with neutropenia (22.0%), hyperglycemia (19.5%), and diarrhea (13.4%) being common. TQ-B3525 showed favorable efficacy and safety for R/R FL patients after ≥2 lines prior therapies.


Assuntos
Linfoma Folicular , Humanos , Linfoma Folicular/tratamento farmacológico , Linfoma Folicular/genética , Intervalo Livre de Progressão , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico
5.
J Med Chem ; 67(8): 6638-6657, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38577724

RESUMO

PI3Kδ is an essential target correlated to the occurrence and development of acute myeloid leukemia (AML). Herein, we investigated the pyrazolo[3,4-d]pyrimidine derivatives as potent and selective PI3Kδ inhibitors with high therapeutic efficacy toward AML. There were 44 compounds designed and prepared in a four-round optimization, and the biological evaluation showed that (S)-36 exhibited potent PI3Kδ inhibitory activity, high selectivity, and high antiproliferative activities against MV-4-11 and MOLM-13 cells, coupled with high oral bioavailability (F = 59.6%). In the MOLM-13 subcutaneous xenograft model, (S)-36 could significantly suppress the tumor progression with a TGI of 67.81% at an oral administration dosage of 10 mg/kg without exhibiting obvious toxicity. Mechanistically, (S)-36 could robustly inhibit the PI3K/AKT pathway for significant suppression of cell proliferation and remarkable induction of apoptosis both in vitro and in vivo. Thus, compound (S)-36 represents a promising PI3Kδ inhibitor for the treatment of acute myeloid leukemia with high efficacy.


Assuntos
Antineoplásicos , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases , Leucemia Mieloide Aguda , Inibidores de Fosfoinositídeo-3 Quinase , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Animais , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Inibidores de Fosfoinositídeo-3 Quinase/química , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Proliferação de Células/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto , Descoberta de Drogas , Camundongos Nus , Simulação de Acoplamento Molecular , Masculino
6.
Cell Biochem Funct ; 42(3): e3998, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561964

RESUMO

Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer mortality in women. As the phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a wide range of physiological functions of cells including growth, proliferation, motility, and angiogenesis, any alteration in this axis could induce oncogenic features; therefore, numerous preclinical and clinical studies assessed agents able to inhibit the components of this pathway in BC patients. To the best of our knowledge, this is the first study that analyzed all the registered clinical trials investigating safety and efficacy of the PI3K/AKT/mTOR axis inhibitors in BC. Of note, we found that the trends of PI3K inhibitors in recent years were superior as compared with the inhibitors of either AKT or mTOR. However, most of the trials entering phase III and IV used mTOR inhibitors (majorly Everolimus) followed by PI3K inhibitors (majorly Alpelisib) leading to the FDA approval of these drugs in the BC context. Despite favorable efficacies, our analysis shows that the majority of trials are utilizing PI3K pathway inhibitors in combination with hormone therapy and chemotherapy; implying monotherapy cannot yield huge clinical benefits, at least partly, due to the activation of compensatory mechanisms. To emphasize the beneficial effects of these inhibitors in combined-modal strategies, we also reviewed recent studies which investigated the conjugation of nanocarriers with PI3K inhibitors to reduce harmful toxicities, increase the local concentration, and improve their efficacies in the context of BC therapy.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinase , Humanos , Feminino , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico
7.
Microbiol Spectr ; 12(5): e0183923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564670

RESUMO

Solid organ transplantation is a crucial treatment for patients who have reached the end stage of heart, lung, kidney, or liver failure. However, the likelihood of developing cancer post-transplantation increases. Additionally, primary malignant tumors remain a major obstacle to the long-term survival of transplanted organs. Therefore, it is essential to investigate effective therapies that can boost the immune system's ability to combat cancer and prevent allograft rejection. We established a mouse orthotopic liver tumor model and conducted allogeneic heterotopic heart transplantation. Various treatments were administered, and survival curves were generated using the Kaplan-Meier method. We also collected graft samples and measured inflammatory cytokine levels in the serum using an inflammatory array. The specificity of the histochemical techniques was tested by staining sections. We administered a combination therapy of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 to primary liver cancer model mice with cardiac allografts. Consistent with our prior findings, L. rhamnosus HN001 alleviated the intestinal flora imbalance caused by BEZ235. Our previous research confirmed that the combination of BEZ235 and L. rhamnosus HN001 significantly prolonged cardiac transplant survival. IMPORTANCE: We observed that the combination of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 notably prolonged cardiac transplant survival while also inhibiting the progression of primary liver cancer. The combination therapy was efficacious in treating antitumor immunity and allograft rejection, as demonstrated by the efficacy results. We also found that this phenomenon was accompanied by the regulation of inflammatory IL-6 expression. Our study presents a novel and effective therapeutic approach to address antitumor immunity and prevent allograft rejection.


Assuntos
Transplante de Coração , Lacticaseibacillus rhamnosus , Serina-Treonina Quinases TOR , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Neoplasias Hepáticas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
8.
J Med Chem ; 67(6): 4936-4949, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38477582

RESUMO

The H1047R mutation of PIK3CA is highly prevalent in breast cancers and other solid tumors. Selectively targeting PI3KαH1047R over PI3KαWT is crucial due to the role that PI3KαWT plays in normal cellular processes, including glucose homeostasis. Currently, only one PI3KαH1047R-selective inhibitor has progressed into clinical trials, while three pan mutant (H1047R, H1047L, H1047Y, E542K, and E545K) selective PI3Kα inhibitors have also reached the clinical stage. Herein, we report the design and discovery of a series of pyridopyrimidinones that inhibit PI3KαH1047R with high selectivity over PI3KαWT, resulting in the discovery of compound 17. When dosed in the HCC1954 tumor model in mice, 17 provided tumor regressions and a clear pharmacodynamic response. X-ray cocrystal structures from several PI3Kα inhibitors were obtained, revealing three distinct binding modes within PI3KαH1047R including a previously reported cryptic pocket in the C-terminus of the kinase domain wherein we observe a ligand-induced interaction with Arg1047.


Assuntos
Antineoplásicos , Neoplasias , Camundongos , Animais , Antineoplásicos/química , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Neoplasias/tratamento farmacológico , Mutação , Classe I de Fosfatidilinositol 3-Quinases/uso terapêutico
9.
J Clin Invest ; 134(6)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319732

RESUMO

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Metformina , Humanos , Camundongos , Animais , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Serina-Treonina Quinases TOR/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Glucose , Metformina/farmacologia , Microambiente Tumoral
10.
Breast Cancer Res Treat ; 205(1): 201-210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38310616

RESUMO

PURPOSE: In 2010, the US Food and Drug Administration approved eribulin for the treatment of metastatic breast cancer (MBC). Since then, the treatment landscape has evolved with many new therapy classes, a more recent one being the small molecule inhibitors of phosphoinositide 3 kinase (PI3K). We sought to characterize the treatment patterns and clinical outcomes of patients with MBC who received eribulin following prior treatment with a PI3K inhibitor. METHODS: A retrospective cohort study based on medical record review included MBC patients who initiated eribulin between March 2019 and September 2020 following prior treatment with a PI3K inhibitor was conducted. Patient demographics, treatment characteristics, and clinical outcomes were analyzed descriptively. Real-world progression-free survival (rwPFS) and overall survival (OS) were estimated from the initiation of eribulin therapy using Kaplan-Meier analyses. RESULTS: 82 eligible patients were included. Patients' median age at eribulin initiation was 62 years; 86.5% had hormone receptor-positive, human epidermal growth factor receptor 2-negative tumors. Eribulin was most often administered in the second or third line (82.9%) in the metastatic setting. Best overall response on eribulin was reported as complete or partial response in 72% of the patients. The median rwPFS was 18.9 months (95% confidence interval [CI], 12.4-not estimable); median OS was not reached. The estimated rwPFS and OS rates at 12 months were 63.3% (95% CI, 50.5-73.7) and 82.6% (95% CI, 72.4-89.3), respectively. CONCLUSION: Our real-world study suggests that eribulin may be a potential treatment option for MBC patients who fail a prior PI3K inhibitor.


Assuntos
Neoplasias da Mama , Furanos , Cetonas , Inibidores de Fosfoinositídeo-3 Quinase , Policetídeos de Poliéter , Humanos , Furanos/uso terapêutico , Cetonas/uso terapêutico , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Adulto , Metástase Neoplásica , Resultado do Tratamento , Idoso de 80 Anos ou mais
11.
Am J Hematol ; 99(3): 439-456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38304959

RESUMO

INTRODUCTION: Aggressive T-cell lymphomas continue to have a poor prognosis. There are over 30 different subtypes of peripheral T-cell lymphoma (PTCL), and we are now beginning to understand the differences between the various subtypes beyond histologic variations. MOLECULAR PATHOGENESIS OF VARIOUS SUBTYPES OF PTCL: Gene expression profiling and other molecular techniques have enabled deeper understanding of differences in various subtypes as reflected in the latest 5th WHO classification of PTCL. It is becoming increasingly clear that therapeutic approaches that target specific cellular pathways are needed to improve the clinical outcomes of PTCL. TARGETED THERAPIES: There are many targeted agents currently in various stages of clinical trials for PTCL that take advantage of the differential expression of specific proteins or receptors in PTCL tumors. This includes the CD30 directed antibody drug conjugate brentuximab vedotin. Other notable targets are phosphatidylinositol 3-kinase inhibitors, histone deacetylase inhibitors, CD25, and chemokine receptor 4. Anaplastic lymphoma kinase (ALK) inhibitors are promising for ALK expressing tumors. IMMUNOTHERAPIES: Allogeneic stem cell transplant continues to be the curative therapy for most aggressive subtypes of PTCL. The use of checkpoint inhibitors in the treatment of PTCL is still controversial, with best results seen in cases of extranodal natural killer cell/T-cell lymphoma. Bispecific antibody-based treatments and chimeric antigen receptor cell-based therapies are in clinical trials.


Assuntos
Linfoma de Células T Periférico , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Linfoma de Células T Periférico/terapia , Linfoma de Células T Periférico/tratamento farmacológico , Receptores Proteína Tirosina Quinases/uso terapêutico , Medição de Risco
12.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396649

RESUMO

The dysregulation of the phosphatidylinositol-3-kinase (PI3K) pathway can lead to uncontrolled cellular growth and tumorigenesis. Targeting PI3K and its downstream substrates has been shown to be effective in preclinical studies and phase III trials with the approval of several PI3K pathway inhibitors by the Food and Drug Administration (FDA) over the past decade. However, the limited clinical efficacy of these inhibitors, intolerable toxicities, and acquired resistances limit the clinical application of PI3K inhibitors. This review discusses the PI3K signaling pathway, alterations in the PI3K pathway causing carcinogenesis, current and novel PI3K pathway inhibitors, adverse effects, resistance mechanisms, challenging issues, and future directions of PI3K pathway inhibitors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/induzido quimicamente , Inibidores de Proteínas Quinases/efeitos adversos , Carcinogênese/induzido quimicamente , Fosfatidilinositóis/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
13.
J Transl Med ; 22(1): 15, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172946

RESUMO

Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinase , Humanos , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama/patologia , Medicina de Precisão , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Mutação/genética , Classe I de Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Eur J Med Chem ; 265: 116109, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183777

RESUMO

Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/química , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
15.
Mol Ther ; 32(1): 152-167, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37990493

RESUMO

Metastatic melanoma poses significant challenges as a highly lethal disease. Despite the success of molecular targeting using BRAFV600E inhibitors (BRAFis) and immunotherapy, the emergence of early recurrence remains an issue and there is the need for novel therapeutic approaches. This study aimed at creating a targeted delivery system for the oncosuppressor microRNA 126 (miR126) and testing its effectiveness in combination with a phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) inhibitor for treating metastatic melanoma resistant to BRAFis. To achieve this, we synthesized chitosan nanoparticles containing a chemically modified miR126 sequence. These nanoparticles were further functionalized with an antibody specific to the chondroitin sulfate proteoglycan 4 (CSPG4) melanoma marker. After evaluation in vitro, the efficacy of this treatment was evaluated through an in vivo experiment using mice bearing resistant human melanoma. The co-administration of miR126 and the PI3K/AKT inhibitor in these experiments significantly reduced tumor growth and inhibited the formation of liver and lung metastases. These results provide evidence for a strategy to target an oncosuppressive nucleic acid sequence to tumor cells while simultaneously protecting it from plasma degradation. The system described in this study exhibits encouraging potential for the effective treatment of therapy-resistant metastatic melanoma while also presenting a prospective approach for other forms of cancer.


Assuntos
Melanoma , MicroRNAs , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , MicroRNAs/farmacologia
16.
Curr Cancer Drug Targets ; 24(3): 231-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37526459

RESUMO

The PI3K/Akt/mTOR pathway modulates cell growth, proliferation, metabolism, and movement. Moreover, significant studies have shown that the genes involved in this pathway are frequently activated in human cancer. Observational and computational modeling of the PI3K/AKt/ mTOR pathway inhibitors has been explored in clinical trials. It has been observed that the effectiveness and safety evidence from clinical studies and various inhibitors of this route have been given FDA approval. In this review article, we focused on the processes behind the overactivation of PI3K/Akt/mTOR signaling in cancer and provided an overview of PI3K/Akt/mTOR inhibitors as either individual drugs or a combination of different doses of drugs for different types of cancer. Furthermore, the review discusses the biological function and activation of the PI3K/AKt/mTOR signaling and their role in the development of cancers. Additionally, we discussed the potential challenges and corresponding prediction biomarkers of response and resistance for PI3K/Akt/m- TOR inhibitor development. The article focuses on the most current breakthroughs in using the PI3K/Akt/mTOR pathway to target certain molecules.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
17.
Cancer Discov ; 14(2): 240-257, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37916956

RESUMO

PIK3CA (PI3Kα) is a lipid kinase commonly mutated in cancer, including ∼40% of hormone receptor-positive breast cancer. The most frequently observed mutants occur in the kinase and helical domains. Orthosteric PI3Kα inhibitors suffer from poor selectivity leading to undesirable side effects, most prominently hyperglycemia due to inhibition of wild-type (WT) PI3Kα. Here, we used molecular dynamics simulations and cryo-electron microscopy to identify an allosteric network that provides an explanation for how mutations favor PI3Kα activation. A DNA-encoded library screen leveraging electron microscopy-optimized constructs, differential enrichment, and an orthosteric-blocking compound led to the identification of RLY-2608, a first-in-class allosteric mutant-selective inhibitor of PI3Kα. RLY-2608 inhibited tumor growth in PIK3CA-mutant xenograft models with minimal impact on insulin, a marker of dysregulated glucose homeostasis. RLY-2608 elicited objective tumor responses in two patients diagnosed with advanced hormone receptor-positive breast cancer with kinase or helical domain PIK3CA mutations, with no observed WT PI3Kα-related toxicities. SIGNIFICANCE: Treatments for PIK3CA-mutant cancers are limited by toxicities associated with the inhibition of WT PI3Kα. Molecular dynamics, cryo-electron microscopy, and DNA-encoded libraries were used to develop RLY-2608, a first-in-class inhibitor that demonstrates mutant selectivity in patients. This marks the advance of clinical mutant-selective inhibition that overcomes limitations of orthosteric PI3Kα inhibitors. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 227 . This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Neoplasias da Mama , Hiperinsulinismo , Humanos , Feminino , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Microscopia Crioeletrônica , Neoplasias da Mama/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/genética , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo/genética , DNA
18.
Int J Oncol ; 64(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063204

RESUMO

Neuroblastoma (NB) is one of the common solid tumors in childhood and poses a threat to the lives of children. Patients with advanced­stage or recurrent NB have a poor prognosis. CUDC­907, as a novel dual­target inhibitor of histone deacetylase (HDAC) and phosphatidylinositol­3­kinase (PI3K), has been proven to play an antitumor role in several types of tumors. However, the exact role of CUDC­907 in NB remains unclear. In the present study, in vivo and in vitro assays were performed to investigate the anti­NB activity of CUDC­907. Pentraxin 3 (PTX3) small interfering RNA (siRNA) and PTX3 overexpression plasmid were transfected into cells to define the underlying mechanisms of CUDC­907. Tumor tissues and clinical information were collected and immunohistochemistry (IHC) was conducted to analyze the association between the expression of HDAC1, HDAC2, HDAC3 and CD44, and the prognosis of patients with NB. The results indicated that CUDC­907 significantly inhibited the proliferation and migration, and induced the apoptosis of NB cells, downregulating the expression level of MYCN, and suppressing the PI3K/AKT and MAPK/ERK pathways. Furthermore, CUDC­907 suppressed the stem­like properties of NB cells by inhibiting PTX3, a ligand and upstream protein of CD44. IHC revealed that the high expression of HDAC1, 2, 3 and CD44 was associated with a poor prognosis of patients with NB. On the whole, these findings indicate that CUDC­907 may be developed into a possible therapeutic approach for patients with NB.


Assuntos
Inibidores de Histona Desacetilases , Neuroblastoma , Inibidores de Fosfoinositídeo-3 Quinase , Criança , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilases/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , RNA Interferente Pequeno , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico
19.
Cancer Gene Ther ; 30(12): 1691-1701, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821641

RESUMO

Omipalisib (GSK2126458), a potent dual PI3K/mTOR inhibitor, is reported to exhibit anti-tumor effect in several kinds of cancers. More than 50% of acute myeloid leukemia (AML) patients display a hyperactivation of PI3K/AKT/mTOR signaling. We investigated the anti-proliferative effect of omipalisib in AML cell lines with varied genetic backgrounds. The OCI-AML3 and THP-1 cell lines had a significant response to omipalisib, with IC50 values of 17.45 nM and 8.93 nM, respectively. We integrated transcriptomic profile and metabolomic analyses, and followed by gene set enrichment analysis (GSEA) and metabolite enrichment analysis. Our findings showed that in addition to inhibiting PI3K/AKT/mTOR signaling and inducing cell cycle arrest at the G0/G1 phase, omipalisib also suppressed mitochondrial respiration and biogenesis. Furthermore, omipalisib downregulated several genes associated with serine, glycine, threonine, and glutathione metabolism, and decreased their protein and glutathione levels. In vivo experiments revealed that omipalisib significantly inhibited tumor growth and prolonged mouse survival without weight loss. Gedatolisib and dactolisib, another two PI3K/mTOR inhibitors, exerted similar effects without affecting mitochondria biogenesis. These results highlight the multifaceted anti-leukemic effect of omipalisib, revealing its potential as a novel therapeutic agent in AML treatment.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Biogênese de Organelas , Serina-Treonina Quinases TOR/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Glutationa/farmacologia , Glutationa/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células
20.
J Cancer Res Clin Oncol ; 149(16): 15293-15310, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37594532

RESUMO

The phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway regulates proliferation, survival and metabolism, and its dysregulation is one of the most frequent oncogenic events across human malignancies. Over the last two decades, there has been significant focus on the clinical development of PI3K pathway inhibitors. More than 40 different inhibitors of this axis have reached various stages of clinical trials, but only a few of them have been approved by the Food and Drug Administration (FDA) for cancer treatment. These clinical results, however, could be improved given the importance of PI3K signaling in cancer and its role in linking cancer growth with metabolism. In this systematic review, after a glance at PI3K/AKT/mTOR pathway and its different inhibitors, we retrieved registered clinical trials evaluating the efficacy and safety of PI3K/AKT/mTOR inhibitors on Clinicaltrials.gov. Following the extraction of the data, finally we analyzed 2250 included studies in multiple steps, beginning with an overview and moving on to the details about type of malignancies, inhibitors, and treatment strategies. We also took a closer look at more than 100 phase III-IV clinical trials to pinpoint promising therapies, hoping that presenting a comprehensive picture of current clinical trials casts a flash of light on what remains to be done in future clinical trials of PI3K/AKT/mTOR inhibitors in human malignancies.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinase , Humanos , Fosfatidilinositol 3-Quinase/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo , Inibidores de MTOR , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA